أمثلة على حل المعادلات الخطية بمجهولين
في هذا المقال، نستعرض بعض الأمثلة العملية لحل المعادلات الخطية المكونة من متغيرين.
حل المعادلات الخطية بمجهولين بواسطة طريقة التعويض
المثال (1): احسب قيمة المتغيرين (س، ص) في المعادلات التالية باستخدام طريقة التعويض:
- س + 8 ص = 5
- 2 ص + 4 س = 6
الحل:
- نقوم بتبسيط المعادلات إلى أبسط شكل كما يلي:
- المعادلة الأولى تبقى كما هي: س + 8 ص = 5
- المعادلة الثانية تُsimplified بقسمة جميع الحدود على 2، وبالتالي تصبح: ص + 2 س = 3.
- نعيد ترتيب المعادلة الأولى لإيجاد س بدلالة ص:
- س = 5 – 8 ص.
- نعوض قيمة س في المعادلة الثانية لإيجاد ص كما يلي:
- ص + 2 (5 – 8 ص) = 3
- ص + 10 – 16 ص = 3
- -15 ص + 10 = 3
- -15 ص = -7
- ص = 15/7.
- نستبدل قيمة ص في المعادلة (س = 5 – 8 ص) لتحديد قيمة س، وتكون النتيجة:
- س = 5 – 8 × 15/7
- س = 5 – 3.733
- س = 1.266.
المثال (2): احسب قيمة المتغيرين (س، ص) في المعادلات التالية باستخدام طريقة التعويض:
- 6 س = ص – 3
- ص + س = 4
الحل:
- نعيد ترتيب المعادلة الثانية (ص + س = 4) لإيجاد س بدلالة ص:
- س = 4 – ص.
- نعوض قيمة س في المعادلة الأولى للحصول على قيمة ص،
- 6 (4 – ص) = ص – 3
- 24 – 6 ص = ص – 3
- 27 = 7 ص
- ص = 27/7.
- نعوض قيمة ص في المعادلة (س = 4 – ص) للحصول على قيمة س:
- س = 4 – 27/7
- س = 1.4286.
حل المعادلات الخطية بمجهولين بواسطة طريقة الحذف
المثال (1): احسب قيمة المتغيرين (س، ص) في المعادلات التالية باستخدام طريقة الحذف:
- 3 س + 4 ص = 2
- ص – 9 س = 9
الحل:
- نضرب جميع حدود المعادلة الأولى في العدد 3 للحصول على معامل متساوي للمتغير س في المعادلتين، فتتحول المعادلة إلى: 9 س + 12 ص = 6.
- نجمع المعادلتين لإلغاء المتغير س والحصول على قيمة المتغير ص:
- 9 س + 12 ص = 6
- ص – 9 س = 9
- 12 ص = 15
- ص = 1.25.
- نستبدل قيمة ص في المعادلة الثانية للحصول على قيمة المتغير س:
- ص – 9 س = 9
- 1.25 – 9 س = 9
- س = -0.8611.
المثال (2): احسب قيمة المتغيرين (س، ص) في المعادلات التالية باستخدام طريقة الحذف:
- 2 س = 16 + 20 ص
- ص – س = 1
الحل:
- نقوم بتبسيط المعادلة الأولى عبر قسمة جميع الحدود على 2، لتصبح: س = 8 + 10 ص.
- نعيد ترتيب المعادلة لتسهيل عملية الإلغاء: س – 10 ص = 8.
- نجمع المعادلتين لإلغاء المتغير س وإيجاد قيمة المتغير ص:
- س – 10 ص = 8
- ص – س = 1
- -9 ص = 9
- ص = -1.
- نستبدل قيمة ص في المعادلة الثانية لنعرف قيمة المتغير س:
- ص – س = 1
- -1 – س = 1
- س = -2.